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Abstract The similarity of atrophy patterns in Alzhei-

mer’s disease (AD) and in normal aging suggests age as a

confounding factor in multivariate models that use struc-

tural magnetic resonance imaging (MRI) data. To study the

effect and compare different age correction approaches on

AD diagnosis and prediction of mild cognitive impairment

(MCI) progression as well as investigate the characteristics

of correctly and incorrectly classified subjects. Data from

two multi-center cohorts were included in the study

[AD = 297, MCI = 445, controls (CTL) = 340]. 34 cor-

tical thickness and 21 subcortical volumetric measures

were extracted from MRI. The age correction approaches

involved: using age as a covariate to MRI-derived mea-

sures and linear detrending of age-related changes based on

CTL measures. Orthogonal projections to latent structures

was used to discriminate between AD and CTL subjects,

and to predict MCI progression to AD, up to 36-months

follow-up. Both age correction approaches improved

models’ quality in terms of goodness of fit and goodness of

prediction, as well as classification and prediction accura-

cies. The observed age associations in classification and

prediction results were effectively eliminated after age

correction. A detailed analysis of correctly and incorrectly

classified subjects highlighted age associations in other

factors: ApoE genotype, global cognitive impairment and

gender. The two methods for age correction gave similar

results and show that age can partially masks the influence

of other aspects such as cognitive impairment, ApoE-e4

genotype and gender. Age-related brain atrophy may have

a more important association with these factors than pre-

viously believed.
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Introduction

Alzheimer’s disease (AD), the most common form of

dementia, is a progressive neurodegenerative disorder that

clinically characterizes by gradual loss of cognitive

functions. Mild cognitive impairment (MCI), an interme-

diate condition between normal cognition and dementia,

often represents a prodromal form of dementia. MCI

patients have a significantly higher risk of converting to

AD or other types of dementia. However not all MCI

patients develop dementia even after several years. The

new criteria for diagnosing ‘‘dementia due to AD’’ and

‘‘MCI due to AD’’ in addition to core clinical criteria,

include the use of imaging and other biomarkers to

improve the certainty of diagnoses (Albert et al. 2011;

McKhann et al. 2011). However, the need of additional

work to validate these biomarkers for routine clinical

practice is also noted.

Structural magnetic resonance imaging (MRI) is an

important marker in clinical practice for dementia diag-

nosis, particularly in memory clinic settings when younger

and rare conditions are examined (Falahati et al. 2014a).

MRI has been widely studied for early detection and

diagnosis of AD in terms of atrophy of brain structures. In

particular, atrophy of medial temporal structures such as

hippocampus is demonstrated in AD patients (Scheltens

et al. 1992). Due to the complexity of AD, measures of

single structures from MRI are probably insufficient for

accurate diagnosis. The combination of different structures

has proven to be more useful when distinguishing AD from

cognitively normal elderly subjects (CTL) (Westman et al.

2011b). With the help of sophisticated image analysis

techniques, numerous volumetric and cortical thickness

measures can be extracted from structural MRI data.

Machine learning and multivariate data analysis meth-

ods provide tools for processing and finding inherent pat-

terns in such data with high complexity and dimensionality.

Methods like orthogonal projection to latent structures

(OPLS) (Bylesjö et al. 2006; Trygg and Wold 2002) are

efficient, robust and validated tools for modeling complex

biological data. OPLS was developed with the aim of

reducing model complexity and improving model trans-

parency. The improved interpretation property of the OPLS

method postures it as a suitable analysis method. OPLS has

successfully been applied in research for AD diagnosis and

prediction of MCI progression (Aguilar et al. 2014; Spulber

et al. 2013).

Confounding factors such as age negatively affect the

performance of machine learning and multivariate models.

Global and regional brain changes related to increasing age

can potentially lead to misclassification of younger AD

patients and older CTL subjects. Therefore, there is a need

for developing methods to address this problem. Recently

several methods for correcting the age associations are

proposed (Dukart et al. 2011; Koikkalainen et al. 2012).

The focus of these studies are statistical improvements

while their effects on the characteristics of correctly and

incorrectly classified subjects were disregarded. Studying

the subjects’ characteristics is of high importance since it

can distinctly reflect the way age correction improves the

outcomes. Further, to compare these methods to simply use

age as a covariate has not been properly investigated.

In this work two age correction approaches were

investigated: simply using age as a variable in the OPLS

model and a linear detrending approach that removes age-

related effects from each variable based on measures in

CTL subjects. The effect of age correction approaches on

the classification of AD and CTL subjects, and prediction

of progression from MCI to AD was explored. The char-

acteristics of correctly/incorrectly classified and predicted

subjects before and after age correction were studied in

detail. We hypothesized that age correction would improve

the performance of both classification and prediction.

Additionally, studying the characteristics of subjects before

and after age correction may reveal other clinically rele-

vant aspects.

Materials and Methods

Study Setting

Data were obtained from two large multi-center cohorts,

the Alzheimer’s disease Neuroimaging Initiative (ADNI)

database (http://adni.loni.usc.edu) and AddNeuroMed.

ADNI was launched in 2003 by the National Institute on

Aging (NIA), the National Institute of Biomedical Imaging

and Bioengineering (NIBIB), the Food and Drug Admin-

istration (FDA), private pharmaceutical companies and

non-profit organizations (Mueller et al. 2005). The primary

goal of ADNI is to test whether serial MRI, PET, other

biological markers, and clinical and neuropsychological

assessments can be combined to measure the progression of

MCI and early AD. The Principal Investigator of this ini-

tiative is Michael W. Weiner, MD, VA Medical Center and

University of California -San Francisco. ADNI subjects

were recruited from over 50 sites across the U.S. and

Canada. For up-to-date information, see www.adni-info.

org. AddNeuroMed, a part of InnoMed (Innovative

Medicines in Europe), is an integrated project aimed to

develop and validate novel surrogate markers in AD

(Lovestone et al. 2007). The neuroimaging part of

AddNeuroMed uses MRI collected from six different sites

across Europe (http://www.innomed-addneuromed.com/).
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A total of 1082 subjects were included in the current

study (AD = 297, MCI = 445 and CTL = 340). At

12-month follow-up, 85 MCI patients progressed to AD

(MCI-p) and 360 remained stable (MCI-s). The demo-

graphics of the dataset are given in Table 1. The subjects in

the ADNI study have also been followed up at 18, 24 and

36 months after baseline. MCI individuals who progressed

to AD were considered as MCI-p and the rest as MCI-s.

Inclusion and Diagnostic Criteria

Participants’ recruitment and eligibility criteria were very

similar in both cohorts (Petersen et al. 2010; Simmons et al.

2011). Briefly, AD diagnosis was based on NINCDS-

ADRDA and DSM-IV criteria for probable AD, as well as

a total clinical dementia rating (CDR) score of 0.5 or

above. MCI diagnosis required a MMSE score between 24

and 30; memory complaints; normal activities of daily

living; total CDR score of 0.5; and Geriatric Depression

Scale (GDS) score of B5. The inclusion criteria for control

participants were a MMSE score between 24 and 30; total

CDR score of 0; and GDS score B5. No significant neu-

rological or psychiatric illness, no significant unstable sys-

temic illness or organ failure, and no history of alcohol or

substance abuse or dependence were required for all three

groups. MRI information was not used for diagnosis.

Imaging

MRI Data Acquisition

In both cohorts, 1.5T MRI data was collected from a

variety of MR-systems with protocols optimized for each

type of scanner. The MRI protocol included a high-

resolution sagittal 3D T1-weighted MPRAGE volume

(voxel size 1.1 9 1.1 9 1.2 mm3) acquired using a cus-

tom pulse sequence specifically designed for the ADNI

study to ensure compatibility across scanners (Jack et al.

2008). MRI data acquisition in AddNeuroMed was

designed to be compatible with the ADNI protocol

(Simmons et al. 2011).

Regional Subcortical Volume Segmentation

and Cortical Thickness Parcellation

The FreeSurfer pipeline (version 5.3.0) was applied to the

MRI images to produce regional cortical thickness and

subcortical volumetric measures. Full details and refer-

ences of cortical reconstruction and subcortical volumetric

segmentation procedure are included in the supplementary

material 1. Data was processed through the hive database

system (theHiveDB) (Muehlboeck et al. 2014). Visual

quality control was performed on all output data. All steps

involving brain extraction, automated Talairach transfor-

mation, tessellation, surfaces reconstruction, and subcor-

tical segmentation were carefully checked. This

segmentation approach has been used for multivariate

classification of Alzheimer’s disease and healthy controls

(Westman et al. 2010), neuropsychological-image analysis

(Ferreira et al. 2014) and biomarker discovery (Maioli

et al. 2015). In total, 55 MRI measures were used as input

variables for OPLS classification, i.e. 34 regional cortical

thickness measures and 21 regional subcortical volumes

(measures from the left and right sides were averaged).

Supplementary material 2 provides a list of measures and

their mean and standard deviation in each diagnostic

group. All subcortical volumetric and cortical thickness

measures were used in their raw form (Westman et al.

2013).

Table 1 Demographic and

clinical characteristics
CTL MCI-s MCI-pa AD

Count 340 360 85 297

Age, years 75.0 ± 5.7 75.0 ± 6.9 74.3 ± 6.5 75.7 ± 7.0

Gender, Female/Male 172/168 141/219 35/50 165/132

Education, years 14.3 ± 4.3 13.9 ± 4.7 13.8 ± 4.2 12.0 ± 4.9

MMSE score 29.1 ± 1.1 27.1 ± 1.7 26.5 ± 1.8 22.2 ± 3.7

CDR 0 0.5 0.5 0.92 ± 0.43

ApoE-e4, N/P 242/92 182/158 31/52 110/178

Cohort, ADNI/ANM 227/113 260/100 62/23 175/122

Continuous data is represented as mean ± SD, CTL control subjects, MCI mild cognitive impairment, MCI-

s stable MCI, MCI-p progressive MCI, AD Alzheimer’s disease, MMSE mini mental state examination,

CDR clinical dementia rating, ApoE apolipoprotein E, N/P negative/positive for at least one e4 allele,

ADNI/ANM Alzheimer’s Disease Neuroimaging Initiative/AddNeuroMed
a MCI patients progressed to AD at month-12 follow-up
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Data Analysis

Multi and Univariate Data Analysis

Pre-processing was performed using mean-centering and

unit variance scaling in order to transform the data into a

suitable form for analysis (Eriksson et al. 2013). OPLS

(Bylesjö et al. 2006; Trygg and Wold 2002), a supervised

multivariate data analysis method, was used to classify AD

patients and CTL individuals as well as to predict pro-

gression in the MCI patients. The OPLS method is an

extension to the projection to latent structures (PLS)

method (Wold et al. 1984). PLS has been developed for the

purpose of modeling complex data based on the assump-

tion that there are latent variables, which generate the

observed data. PLS extracts these latent variables by

maximizing the covariance between two sets of data,

descriptor and response variables. In OPLS, the systematic

variation in descriptor data is separated into two blocks,

predictive variation correlated to response data and non-

predictive variation orthogonal to response data. This

separation improves the model transparency and reduces

the model complexity. OPLS and PLS provide the same

predictive accuracy, however, particularly for the two-class

discriminant problem OPLS has an advantage over PLS

that provides only one single predictive component (first

component) and the other orthogonal components (if any)

are not important in class separation. Accordingly, one

single loading vector describes the class discriminating

variables.

The performance of an OPLS model is quantified by two

parameters, the goodness of fit (R2) and the goodness of

prediction (Q2) (Eriksson et al. 2013). R2 is the fraction of

variation of the training data that can be explained by the

components of the model. R2 shows how well the model

fits the training data. Q2 is the fraction of variation of the

training data that can be predicted by the model. Q2 shows

how reliable the model predicts new data. Q2 is used to find

the optimal model complexity, which results in the most

valid model with a balance between fit and predictive

ability. Therefore, Q2 is more important than R2 and a

model with higher Q2 is consider as a better model. Q2 is

estimated by cross validation (CV). CV is a practical

approach for evaluating learning algorithms that is based

on building of a number of parallel models (Wold 1978). In

this work, sevenfold CV was used to calculate Q2. In

addition to Q2 and R2 as performance metrics, classifica-

tion success rates were reported in terms of the accuracy,

sensitivity and specificity.

For univariate comparisons of quantitative and qualita-

tive variables, the independent samples t test and the v2 test

were used respectively.

Age Correction Methods

Two age correction methods were implemented: (1) a

simple approach that treats age as a covariate and includes

age in the OPLS model as a separate variable along with

MRI-derived variables and (2) a linear detrending algo-

rithm based on age-related changes in the CTL group only.

The detrending algorithm fits a generalized linear model

(GLM) to each MRI-derived variable and age, in the CTL

group only, and models the age-related changes as a linear

drift. Then, the regression coefficient of the resulted GLM

model (linear drift) is used to remove the age-related

changes from all individuals (AD, MCI and CTL) and

obtain corrected values. The linear model was chosen

based on the Good et al. (2001) study where they found an

age-related linear decrease in global grey matter volume in

healthy individuals. The assumption for age correction

method is that the age related changes in the CTL group are

due to aging, while the age related changes in the MCI/AD

group includes disease-related changes as well. Therefore,

the algorithm calculates age-related effects based on the

CTL group only, since removing age-related changes based

on the AD or MCI group might also remove the disease-

related changes. The detrending method was applied prior

to further statistical analysis.

Implementation

In the first step, three OPLS models were created for

classification of AD and CTL subjects: (1) a model based

on the raw measures (uncorrected model), (2) a model

using age as a covariate (covariate model) and (3) a model

based on age-detrended measures (detrended model).

Subsequently, the resulted classification models were used

to predict MCI patients as unseen data.

The output of the OPLS model is a cross-validated score

vector where each score corresponds to one subject. A

subject with a score close to one displays a pattern similar

to AD and a subject with a score close to zero displays a

pattern similar to CTL. A fixed cut-off equal to 0.5 was

used to assign class membership to the predicted scores and

afterwards to calculate accuracy, sensitivity and specificity

(Spulber et al. 2013). Similarly, the prediction result for

MCI patients is a score vector and by applying an appro-

priate cut-off (0.5), MCI patients can be predicted as CTL-

like/AD-like. These steps were conducted for each age

correction method.

All models were created hierarchically, i.e. volumetric

and thickness measures were analyzed separately, and the

output scores of these base models were used to create the

final model. In the simple age correction method, age was

included in the model along with base scores.
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Results

Table 2 summarizes the results from the analyses. The

OPLS model based on the original MRI variables (uncor-

rected model) resulted in Q2 = 0.567 and R2 = 0.568. The

model using original MRI data and age as a covariate

(covariate model) resulted in Q2 = 0.580 and R2 = 0.586.

The model based on age corrected MRI data (detrended

model) resulted in Q2 = 0.582 and R2 = 0.583. The clas-

sification of AD and CTL subjects with uncorrected model

resulted in an accuracy = 86.7 %, the covariate model

resulted in an accuracy = 87.3 % and the detrended model

resulted in an accuracy = 88.2 %. MCI prediction using

the uncorrected model resulted in an accuracy = 62.7 %,

the covariate model resulted in an accuracy = 62.9 % and

finally the accuracy of the detrended model was 65.0 %.

Medial temporal structures including amygdala, entorhi-

nal cortex and hippocampus and the temporal gyrus regions

(inferior, middle and superior) were the most important

variables for the separation between the AD and CTL group

in all three models. Figure 1 shows the thickness values of

entorhinal cortex before and after applying age correction in

the different groups. The Pearson correlation coefficients

between all MRI measures and age, before and after age

correction are given in supplementary material 3.

Table 3 shows the prediction results for the MCI sub-

jects from the ADNI cohort at the different follow-up time

points. At each time point, the detrended model resulted in

the highest accuracy among the three models. In the

uncorrected model, by increasing the follow-up duration

from 12 months to 36 months, the prediction accuracy was

improved from 60.9 to 66.8 %. In the detrended model, the

prediction accuracy rose from 63.0 to 70.8 %.

Additional analyses were performed to further investi-

gate the effect of the age correction methods on classifi-

cation and prediction models. Table 4 shows the

comparison between correct and incorrect classified sub-

jects within each diagnostic group (i.e. within AD and CTL

group) and the comparison of incorrect classified subjects

between AD and CTL subjects. Without age correction,

within both the CTL and the AD group, the mean age of

correctly and incorrectly classified subjects was signifi-

cantly different (p\ 0.001 and p = 0.006, respectively).

After accounting by age, both the covariate and detrended

models showed no statistically significant age difference.

The mean age of the incorrect classified CTL and AD

subjects were 79.1 and 73.3 years, respectively (p\ 0.001)

in the uncorrected model. This difference was eliminated in

both the covariate and detrended models. The MMSE score

of AD subjects was significantly higher in incorrectly

classified subjects in all three models. Moreover, the dis-

tribution of ApoE-e4 genotype was significantly different

between incorrectly classified CTL and AD subjects.

Table 5 shows the comparison between correctly and

incorrectly predicted MCI patients within each group (i.e.

within MCI-s and MCI-p group) as well as the comparison

of incorrectly predicted subjects between MCI-s and MCI-

p group. In MCI-s subjects, the mean age of correctly and

incorrectly predicted subjects was significantly different

without considering age (p\ 0.001) but not after

accounting for age. Using uncorrected data resulted in

3.9 years difference between the mean-age of misclassified

MCI-p and MCI-s (p = 0.003), where incorrectly predicted

MCI-s patients were older than incorrectly classified MCI-

p subjects (77.0 and 73.1 years respectively). This differ-

ence was eliminated after age correction. Moreover,

incorrectly predicted MCI-s patients showed significantly

lower MMSE score and lower frequency of male in all

three models. In addition, age correction led to a significant

difference in ApoE-e4 distribution in MCI-s subjects,

showing lower frequency of ApoE-e4 allele in incorrectly

predicted subjects.

Discussion

In recent years, there has been an increased interest in

using advanced machine learning and multivariate data

analysis methods and structural MRI data for early diag-

nosis of AD. Notably, the discriminative capacity of MRI-

derived features and several classifiers for classifying AD

patients and CTL individuals and for predicting

Table 2 AD classification and MCI prediction results

Model Q2 R2 Accuracy % Sensitivity % Specificity %

AD versus CTL classification (CV) Uncorrected 0.567 0.568 86.7 81.8 90.9

Covariate 0.580 0.586 87.3 81.5 92.4

Detrended 0.582 0.583 88.2 82.8 92.9

MCI prediction Uncorrected – – 62.7 70.2 60.9

Covariate – – 62.9 71.4 60.9

Detrended – – 65.0 75.0 62.6

AD Alzheimer’s disease, CTL control subjects, MCI mild cognitive impairment, CV cross-validated, Q2 goodness of prediction, R2 goodness of fit

300 Brain Topogr (2016) 29:296–307

123



progression from MCI to AD has been investigated (Liu

et al. 2013; Wee et al. 2013; Wolz et al. 2011). The OPLS

method in this work resulted in high classification accuracy

and good prediction outcomes. OPLS has previously been

used for classification purposes in the same two multi-

center cohorts considered here (Westman et al. 2011a).
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Fig. 1 The blue, green and cyan markers represent the entorhinal

cortex thickness of CTL, AD and MCI subjects before and after age

correction with detrending method: a CTL subjects before age

correction, b CTL subjects after age correction, c AD patients before

age correction, d AD patients after age correction, e MCI patients

before age correction and f MCI patients after age correction. Each

marker corresponds to one subject. The red lines indicate the age-

related drift fitted in the groups (Color figure online)
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Despite the input data (dataset subjects) and image pro-

cessing (FreeSurfer software version) are non-identical in

the two studies, the accuracy levels were analogous. It has

previously been shown that different advanced classifiers

applied to the same data provide similar levels of accuracy

(Aguilar et al. 2013). At present, limitations are probably

related to input data (quality of data or cohort studied),

clinical diagnosis or the confounding effect of some

demographic variables such as age, rather than the method

used for classification (Falahati et al. 2014b).

Age as a confounding factor can negatively affect the

classification and prediction performance. Indeed, the

similarity of atrophy patterns in AD patients and in cog-

nitively normal subjects can lead to misclassification of

young AD patients and old CTL subjects. Global and

regional changes of brain volumes in normal aging have

been reported in cross-sectional and longitudinal brain

imaging studies (Giorgio et al. 2010; Good et al. 2001;

Scahill et al. 2003; Walhovd et al. 2005). Additionally,

several studies have reported that brain atrophy accelerates

with disease progression in AD and other types of dementia

(Fox et al. 1996; Jack et al. 2004; Sabuncu et al. 2011;

Tisserand et al. 2004). Particularly, global brain atrophy

and reduced volume in the temporal lobe especially in

hippocampus and entorhinal cortex have been reported.

Using age as a covariate in statistical models is a

common way to deal with this problem. Recently, new

approaches such as a data correction method based on

linear regression models (Dukart et al. 2011; Koikkalainen

et al. 2012), and confounder correcting support vector

machine algorithm (Li et al. 2011) have been proposed to

more effectively control for the effect of age as a con-

founding factor. In this study, two approaches i.e. age as a

covariate and deterending age-related changes were

investigated. Both studied approaches here have pros and

cons. In heterogeneous populations containing AD, MCI

and CTL subjects with different patterns and rates of

atrophy simply using age as a covariate may not be an

optimal approach. However, the OPLS method seems to be

able to handle age as a covariate. Detrending age-related

changes is challenging since modeling the exact associa-

tion between age and discriminative features and subse-

quently remove such associations can be difficult and time

consuming. One of the main ideas behind the detrending

method was to remove age-related changes while pre-

serving the disease-related changes for each variable sep-

arately. The hypothesis was that by detrending the AD and

the MCI group based on CTL group, the age-related

changes would be omitted and the disease-related changes

would be kept. Therefore the control group should be

representative of population and equally distributed on the

age range. Hence the detrending method may be more

effective in a larger dataset. In some variables (e.g. hip-

pocampus) the slopes for MCI and AD were slightly tilted

in the opposite direction after age correction, indicating

that the algorithm may overcorrect in older AD and MCI

cases. A reduction in rates of atrophy in older AD and MCI

compared to CTL could be a possible explanation for the

observed pattern. A recent study has shown that a pro-

nounced reduction in rates of atrophy can be observed in

AD and MCI individuals with increasing age, while for

cognitively normal individuals, increasing age leads to

increased rates of atrophy (Holland et al. 2012).

The results indicate that when age is included, the

quality of models in terms of the goodness of fit and more

importantly the goodness of prediction was improved

which led to higher classification and predication accura-

cies. Although accurate discrimination between AD

patients and CTL subjects is of great interest, prediction of

progression form MCI to AD is more valuable since it can

provide an opportunity for early detection of individuals

under risk of developing dementia. Generally, MCI

Table 3 Prediction results for

MCI subjects of ADNI cohort at

different follow-up time points

Time point Model Accuracy % Sensitivity % Specificity %

Month-12

MCI-p = 62, MCI-s = 260

Uncorrected 60.9 72.1 58.2

Covariate 60.2 70.5 57.9

Detrended 63.0 75.4 60.2

Month-18

MCI-p = 90, MCI-s = 232

Uncorrected 64.9 72.2 62.1

Covariate 66.1 74.4 62.9

Detrended 67.7 75.6 64.7

Month-24

MCI-p = 126, MCI-s = 196

Uncorrected 65.5 66.7 64.8

Covariate 67.4 69.0 66.3

Detrended 68.9 69.8 68.4

Month-36

MCI-p = 150, MCI-s = 172

Uncorrected 66.8 65.3 68.0

Covariate 69.3 68.0 70.3

Detrended 70.8 68.7 72.7

MCI mild cognitive impairment, MCI-s stable MCI, MCI-p progressive MCI
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prediction accuracy is not as good as classification of AD

and CTL subjects. Reviewing the literature, classification

accuracies tend to range between 80 and 90 %, mostly

accompanied by lower prediction accuracies for MCI

progression (Falahati et al. 2014b). The MCI group is

clinically quite heterogeneous. Some MCI subjects pro-

gress to AD or even other neurological disorders, some

remain stable over time, with a smaller number reverting to

a cognitively normal status (Mitchell and Shiri-Feshki

2009). In addition, one-year is a relatively short follow-up

time. When the subjects were followed for a longer period,

the accuracy increased. Including age in the models also

improved prediction accuracies. Although, the covariate

and detrended models performed similarly in terms of

model quality values, the detrended model induced the

highest accuracies in all settings.

A detailed analysis of correctly classified and incorrectly

classified subjects provided valuable information on the

age correction performance. As expected, younger AD

patients and older CTL subjects were more likely to be

misclassified. Similarly, younger MCI-p and older MCI-s

patients were prone to misclassification. These findings are

in line with previous studies (Dukart et al. 2011).

Incorrectly classified AD subjects had significantly higher

MMSE score compared to correctly classified AD subjects.

This can be explained by the previous finding that in AD

Table 4 Subjects’ characteristics in AD versus CTL classification: comparison between correctly/incorrectly classified subjects

AD versus CTL Classification CTL subjects AD patients Incorrect-

classified AD

versus CTL

Correct-

classified

Incorrect-

classified

p value Correct-

classified

Incorrect-

classified

p value p value

Uncorrected model

Count 309 31 243 54

Age, years 74.5 ± 5.6 79.1 ± 5.2 <0.001a 76.2 ± 6.7 73.3 ± 7.9 0.006a <0.001a

Education, years 14.3 ± 4.3 14.1 ± 5.5 0.839a 11.9 ± 4.8 12.8 ± 5.1 0.197a 0.294a

MMSE score 29.1 ± 1.1 28.9 ± 1.2 0.326a 21.8 ± 3.7 24.2 ± 2.8 <0.001a <0.001a

Gender, Male/Female 152/157 16/15 0.797b 107/136 25/29 0.762b 0.637b

ApoE-e4, N/P 217/87 26/5 0.138b 86/149 24/29 0.240b 0.001b

Cohort, ADNI/ANM 207/102 20/11 0.780b 141/102 34/20 0.505b 0.886b

Covariate model

Count 314 26 242 55

Age, years 74.8 ± 5.7 77.0 ± 4.3 0.058a 75.7 ± 6.8 75.4 ± 7.7 0.776a 0.237a

Education, years 14.2 ± 4.2 14.0 ± 5.6 0.781a 11.9 ± 4.7 12.5 ± 5.3 0.412a 0.269a

MMSE score 29.1 ± 1.1 28.9 ± 1.1 0.326a 21.7 ± 3.7 24.4 ± 2.7 <0.001a <0.001a

Gender, Male/Female 153/161 15/11 0.380b 103/139 29/26 0.171b 0.675b

ApoE-e4, N/P 223/84 20/5 0.385b 83/151 27/27 0.048b 0.012b

Cohort, ADNI/ANM 210/104 17/9 0.876b 143/99 32/23 0.902b 0.536b

Detrended model

Count 316 24 246 51

Age, years 75.0 ± 5.8 75.3 ± 4.6 0.756a 75.5 ± 7.0 76.3 ± 7.1 0.493a 0.553a

Education, years 14.4 ± 4.3 12.8 ± 5.6 0.205a 12.0 ± 4.8 12.4 ± 5.0 0.530a 0.756a

MMSE score 29.2 ± 1.1 28.8 ± 1.4 0.168a 21.8 ± 3.7 24.4 ± 2.7 <0.001a <0.001a

Gender, Male/Female 155/161 13/11 0.629b 105/141 27/24 0.180b 0.921b

ApoE-e4, N/P 225/87 18/5 0.524b 86/151 24/27 0.156b 0.012b

Cohort, ADNI/ANM 213/103 14/10 0.363b 144/102 31/20 0.767b 0.840b

p value in bold indicates statistically significant difference

Continuous data is represented as mean ± standard deviation, AD Alzheimer’s disease, CTL control subjects, ApoE apolipoprotein E, N/P

negative/positive for at least one e4 allele, MMSE mini mental state examination, ADNI/ANM Alzheimer’s disease Neuroimaging Initiative/

AddNeuroMed
a Independent-samples t test
b Pearson v2
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patients, decreased MMSE score correlates with gray matter

reduction (Frisoni et al. 2002) and correlates with aging

(Pradier et al. 2014). In MCI-s subjects, the mean MMSE

score was slightly higher in correctly classified subjects.

Interestingly, incorrectly classified MCI-s subjects were

more frequently ApoE-e4 positive compared to correctly

classified MCI-s (Table 5). This is in line with previous

studies that reported more regional atrophy in AD patients

with presence of genetic risk, especially in the medial

temporal cortex (Cherbuin et al. 2007; Ferreira et al. 2015;

van der Flier et al. 2011). The incorrectly classified MCI-s

subjects may thus have a high risk of developing AD in the

future.

The frequency of misclassification was higher in female

MCI-s subjects compared to males, indicating that more

female subjects had AD-like structural patterns. This is in

line with recent findings that the female sex is associated

with an increased risk of disease progression (Tifratene

et al. 2015). Although this difference exists even before age

correction, after correcting for age, more female subjects

were prone to be misclassified which could emphases the

role of age. This can support the age- by sex- related dif-

ferences in progression rates that proposed in several

studies (Mielke et al. 2014; Roberts et al. 2014).

The characteristics of correctly and incorrectly classi-

fied/predicted subjects were similar for both correction

approaches. In fact, the association between structural

brain changes, age, sex, ApoE genotype, cognitive status

and other factors are more complicated than pairwise

relations. Although the relationship between these factors

are explored from several perspectives such as age by sex

relations (Fratiglioni et al. 1997), sex by ApoE genotype

relation (Altmann et al. 2014), etc., the connection between

them is poorly understood. Considering age in multivariate

models, regardless of approach, can potentially enhance the

outcomes.

Table 5 Subjects’ characteristics in MCI prediction: comparison between correctly/incorrectly classified subjects

MCI prediction MCI-s subjects MCI-p subjects Incorrect-predicted

MCI-s versus MCI-p

Correct-

predicted

Incorrect-

predicted

p value Correct-

predicted

Incorrect-

predicted

p value p value

Uncorrected model Count 219 141 59 26

Age, years 73.6 ± 7.1 77.0 ± 6.1 <0.001a 75.0 ± 6.9 73.1 ± 5.3 0.220a 0.003a

Education, years 13.8 ± 4.6 14.1 ± 4.7 0.582a 13.8 ± 4.4 13.7 ± 3.8 0.820a 0.651a

MMSE score 27.4 ± 1.7 26.8 ± 1.6 0.001a 26.5 ± 1.9 26.6 ± 1.6 0.802a 0.682a

Gender, Male/Female 144/75 75/66 0.017b 35/24 15/11 0.888b 0.672b

ApoE-e4, N/P 118/87 65/71 0.077b 22/36 8/16 0.694b 0.190b

Cohort, ADNI/ANM 151/68 109/32 0.084b 44/15 18/8 0.609b 0.375b

Covariate model Count 219 141 60 25

Age, years 74.7 ± 7.1 75.3 ± 6.6 0.419a 74.3 ± 7.0 74.6 ± 5.0 0.852a 0.635a

Education, years 13.8 ± 4.6 14.2 ± 4.8 0.394a 13.9 ± 4.4 13.7 ± 3.9 0.853a 0.614a

MMSE score 27.4 ± 1.7 26.8 ± 1.7 0.001a 26.6 ± 1.9 26.4 ± 1.6 0.740a 0.383a

Gender, Male/Female 149/70 70/71 <0.001b 37/23 13/12 0.409b 0.828b

ApoE-e4, N/P 122/83 61/75 0.008b 20/39 10/13 0.418b 0.902b

Cohort, ADNI/ANM 150/69 110/31 0.050b 43/17 19/6 0.682b 0.824b

Detrended model Count 225 135 63 22

Age, years 75.2 ± 7.1 74.4 ± 6.6 0.273a 74.1 ± 6.9 75.4 ± 4.9 0.408a 0.492a

Education, years 13.8 ± 4.5 14.2 ± 4.8 0.478a 14.0 ± 4.1 13.2 ± 4.5 0.418T 0.380a

MMSE score 27.4 ± 1.7 26.7 ± 1.7 0.001a 26.5 ± 1.9 26.6 ± 1.6 0.775a 0.803a

Gender, Male/Female 154/71 65/70 <0.001b 39/24 11/11 0.329b 0.872b

ApoE-e4, N/P 127/83 56/75 0.001b 40/22 12/8 0.715b 0.817b

Cohort, ADNI/ANM 156/69 104/31 0.114b 46/17 16/6 0.979b 0.659b

p value in bold indicates statistically significant difference

Continuous data is represented as mean ± SD, MCI mild cognitive impairment, MCI-p progressive MCI, MCI-s stable MCI, ApoE

apolipoprotein E, N/P negative/positive for at least one e4 allele, MMSE mini mental state examination, ADNI/ANM Alzheimer’s disease

Neuroimaging Initiative/AddNeuroMed
a Independent-samples t test
b Pearson v2
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Conclusion

Both age correction approaches (age as a covariate and

detrending) could effectively eliminate the age differences

in classification and prediction results. Moreover, including

age in the models highlighted the role of the other disease-

related factors such as cognitive impairment and ApoE-e4

genotype. These results demonstrate that age is partially

masking other relevant factors such as ApoE genotype,

global cognitive impairment and sex. This is an important

finding, suggesting that mechanisms underlying the con-

founding effect of these factors should be further investi-

gated. At the time being, clinicians are already quite aware

about the effect of age when interpreting imaging data for

diagnostic purposes. Therefore, the other factors should

also be carefully considered when adjusting diagnostic

interpretations of imaging data in clinical settings. The

exact relationship between normal ageing and AD is far

from being fully understood at present and warrants further

investigations. Non-linear correction methods and other

alternatives for handling confounding factors should be

further investigated. Applying correction methods to other

confounding factors such as education and sex would be of

interest and could potentially improve prediction accuracy

of MCI progression further.
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